Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[bis(4-carboxycyclohexanecarboxylato- $\kappa^2 O^1, O^{1'}$)cadmium(II)]- μ -1,4-bis(imidazol-1-ylmethyl)benzene- $\kappa^{2}N^{3}:N^{3'}]$

Bing-Bing Li^{a,b*} and Bo Xiao^a

^aSchool of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China, and ^bDepartment of Bioengineering, Henan University of Urban Construction, Pingdingshan 467000, People's Republic of China

Correspondence e-mail: libingbinghncj@yahoo.com.cn

Received 25 May 2009; accepted 7 June 2009

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.009 Å; R factor = 0.052; wR factor = 0.120; data-to-parameter ratio = 16.4.

the title coordination polymer, $[Cd(C_8H_{11}O_4)_2]$ In $(C_{14}H_{14}N_4)]_n$, the Cd atom (site symmetry 2) is six-coordinated by two O,O'-bidentate 4-carboxycyclohexanecarboxylate (Hchdc) ligands and two N atoms from two different 1,4bis(imidazol-1-ylmethyl)benzene (1,4-bix) molecules in a very distorted cis-CdN₂O₄ octahedral environment. The 1,4-bix molecules act as bridging ligands that bind two Cd^{II} atoms, thus forming an infinite chain propagating in [100], which is decorated by the Hchdc anions. The structure is completed by $O-H \cdots O$ hydrogen bonds, which link the chains together.

Related literature

For related structures, see: Qi et al. (2003). For background to coordination polymers, see: Chen & Liu (2002); Fang et al. (2006); Kim & Jung (2002); Lehn (1990); Batten & Robson (1998); Yang et al. (2008).

Experimental

Crystal data

V = 3120.4 (3) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.75 \text{ mm}^{-1}$
$T = 292 { m K}$
$0.26 \times 0.22 \times 0.1^{\circ}$

Data collection

Oxford Diffraction Gemini R Ultra	26676 measured reflections
diffractometer	3190 independent reflections
Absorption correction: multi-scan	1658 reflections with $I > 2\sigma(I)$
(CrysAlis RED; Oxford	$R_{\rm int} = 0.116$
Diffraction, 2006)	
$T_{\min} = 0.816, \ T_{\max} = 0.882$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	195 parameters
$wR(F^2) = 0.120$	H-atom parameters constrained
S = 0.95	$\Delta \rho_{\rm max} = 0.62 \text{ e } \text{\AA}^{-3}$
3190 reflections	$\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$

 \times 0.17 mm

Table 1

Selected geometric parameters (Å, °).

Cd1-N1	2.249 (4)	Cd1-O2	2.384 (4)
Cd1-O1	2.306 (4)		
O1-Cd1-O2	55.00 (14)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$		
$O4-H4\cdots O2^{i}$	0.82	1.86	2.644 (6)	161		
Summetry code: (i) $x \pm 1 - y - z \pm 1$						

Symmetry code: (i) $x + \frac{1}{2}, -y, -z + \frac{1}{2}$.

Data collection: CrvsAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors thank Henan University of Urban Construction for support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2986).

References

- Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.
- Chen, X. M. & Liu, G. F. (2002). Chem. Eur. J. 8, 4811-4817.
- Fang, Q.-R., Zhu, G.-S., Xue, M., Zhang, Q.-L., Sun, J.-Y., Guo, X.-D., Qiu, S.-L., Xu, S.-T., Wang, P., Wang, D.-J., Wei, Y. (2006). Chem. Eur. J. 12, 3754-3758
- Kim, Y. J. & Jung, D.-Y. (2002). Chem. Commun. pp. 908-909.
- Lehn, J. M. (1990). Angew. Chem., Int. Ed. Engl. 29, 1304-1305.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

Qi, Y., Wang, Y., Hu, C., Cao, M., Mao, L. & Wang, E. (2003). *Inorg. Chem.* 42, 8519–8523.
Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235.

supplementary materials

Acta Cryst. (2009). E65, m756-m757 [doi:10.1107/S1600536809021618]

catena-Poly[[bis(4-carboxycyclohexanecarboxylato- $\kappa^2 O^1, O^1$ ')cadmium(II)]- μ -1,4-bis(imidazol-1-ylmethyl)benzene- $\kappa^2 N^3: N^3$ ']

B.-B. Li and B. Xiao

Comment

The rational design and synthesis of metal-organic coordination polymers have received intense interest due to their fascinating structural topologies and potential applications as functional materials (e.g. Fang *et al.*, 2006). These coordination polymers can be specially designed by the careful selection of metal cations with preferred coordination geometries, the nature of the anions, the structure of the connecting ligands, and the reaction conditions (Kim & Jung, 2002). The selection of ligand is extremely important because changing the structures of the ligands can control and adjust the topologies of coordination frameworks. Among these mentioned above, chain structures have received much attention in coordination chemistry and life sciecnce (Lehn, 1990). So far, many chain complexes have been generated by self-assembly processes (Chen & Liu, 2002). In this regard, metal 1,4-benzenedicarboxylates (1,4-bdc) have been widely studied (Qi *et al.*, 2003). However, so far, less attention has been given to the 1,4-cyclohexanedicarboxylic acid ligand (H₂chdc). The H₂chdc as an important analogues of 1,4-bdc may be a good candidate for the construction of metal-organic polymers, and it has adopted numerous interesting supramolecular architectures (Batten & Robson, 1998). However, flexible ligands such as 1,4-bis(imidazole-1-ylmethyl)-benzene (1,4-bix) have not been so well explored to date (Yang *et al.*, 2008). In this work, the combination of 1,4-bix with H₂chdc and Cd^{II} cations resulted in the title compound [Cd(1,4-bix)(Hchdc)₂], (I), a new one-dimensional chain coordination polymer.

The selected bond lengthes and angles are listed in Table 1. In compound (I), the Cd^{II} atom is is six-coordinated by four carboxylate O atoms from two different Hchdc ligands, and two N atoms from two different 1,4-bix molecules in a distorted octahedral environment (Fig. 1). The O1, O2, $O2^{i}$ and N1ⁱ atoms comprise the basal plane, whereas the N1 and O1ⁱ occupy the axial positions of the octahedron. As shown in Fig. 2, each 1,4-bix acts as a bridging ligand that binds two Cd^{II} atoms, thus forming a unique chain. The chain is decorated with Hchdc molecules alternately at two sides. Furthermore, the O—H…O hydrogen bonds link the chains together, stablizing the structure of (I).

Experimental

A mixture of CdCl₂·2H₂O (0.5 mmol), H₂chdc acid (0.5 mmol), 1,4-bix (0.5 mmol), and H₂O (500 mmol) was adjusted to pH = 5.8 by addition of aqueous NaOH solution, and heated at 453 K for 5 days. After the mixture was slowly cooled to room temperature, colorless blocks of (I) were recovered in a 28% yield.

Refinement

The H atoms were positioned geometrically (C—H = 0.93–0.97 Å, O—H = 0.82Å) and refined as riding, with $U_{iso}(H)=1.2U_{eq}(carrier)$.

Figures

Fig. 1. The structure of (I), showing displacement ellipsoids drawn at the 20% probability level. Symmetry code: (i) 3/2 - x, 1/2 - y, z; (ii) 5/2 - x, -1/2 - y, z.

Fig. 2. View of the chain structure of (I).

catena-Poly[[bis(4-carboxycyclohexanecarboxylato- $\kappa^2 O^1$, O^1) cadmium(II)]- μ -1, 4-bis(imidazol-1-ylmethyl)benzene- $\kappa^2 N^3$: $N^{3'}$]

Crystal data	
$[Cd(C_8H_{11}O_4)_2(C_{14}H_{14}N_4)]$	$F_{000} = 1424$
$M_r = 693.03$	$D_{\rm x} = 1.475 \ {\rm Mg \ m}^{-3}$
Orthorhombic, Pccn	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ab 2ac	Cell parameters from 3190 reflections
a = 12.6317 (5) Å	$\theta = 3.0-26.5^{\circ}$
<i>b</i> = 19.9697 (12) Å	$\mu = 0.75 \text{ mm}^{-1}$
c = 12.3703 (7) Å	T = 292 K
V = 3120.4 (3) Å ³	Block, colorless
Z = 4	$0.26 \times 0.22 \times 0.17 \text{ mm}$

Data collection

Oxford Diffraction Gemini R Ultra diffractometer	3190 independent reflections
Radiation source: fine-focus sealed tube	1658 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.116$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 26.5^{\circ}$
T = 292 K	$\theta_{\min} = 4.7^{\circ}$
ω scans	$h = -15 \rightarrow 15$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006)	$k = -24 \rightarrow 24$
$T_{\min} = 0.816, T_{\max} = 0.882$	$l = -15 \rightarrow 15$
26676 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $R[F^2 > 2\sigma(F^2)] = 0.052$ H-atom parameters constrained $wR(F^2) = 0.120$ $w = 1/[\sigma^2(F_o^2) + (0.0575P)^2]$ $where P = (F_o^2 + 2F_c^2)/3$ S = 0.95 $(\Delta/\sigma)_{max} < 0.001$ 3190 reflections $\Delta\rho_{max} = 0.62$ e Å⁻³195 parameters $\Delta\rho_{min} = -0.30$ e Å⁻³Primary atom site location: structure-invariant direct

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropi	c or e	eauivalent	isotroi	pic dis	placement	parameters	$(Å^2$)
1		0001011101005		noon opr		quintience	1001101		processies	pen enterers	(/	/

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.7200 (5)	0.1255 (3)	0.1946 (5)	0.0556 (16)
C2	0.7134 (5)	0.0551 (3)	0.1562 (5)	0.0703 (18)
H2	0.6472	0.0495	0.1158	0.084*
C3	0.8075 (6)	0.0347 (3)	0.0813 (6)	0.089 (2)
НЗА	0.8072	0.0627	0.0172	0.107*
H3B	0.8738	0.0420	0.1190	0.107*
C4	0.7998 (7)	-0.0363 (4)	0.0488 (6)	0.106 (3)
H4A	0.8606	-0.0478	0.0045	0.127*
H4B	0.7367	-0.0427	0.0054	0.127*
C5	0.7956 (5)	-0.0833 (3)	0.1467 (6)	0.082 (2)
H5	0.7788	-0.1281	0.1192	0.099*
C6	0.7065 (7)	-0.0639 (4)	0.2243 (7)	0.098 (2)
H6A	0.6387	-0.0729	0.1905	0.118*
H6B	0.7113	-0.0910	0.2891	0.118*
C7	0.7123 (6)	0.0065 (3)	0.2537 (6)	0.089 (2)
H7A	0.7758	0.0137	0.2961	0.107*
H7B	0.6521	0.0172	0.2992	0.107*
C8	0.9032 (6)	-0.0881 (3)	0.2022 (7)	0.078 (2)
C9	0.9060 (3)	0.2554 (3)	0.4765 (4)	0.0524 (13)
Н9	0.8851	0.2997	0.4856	0.063*
C10	0.9221 (4)	0.1567 (3)	0.4138 (5)	0.0657 (16)
H10	0.9152	0.1192	0.3699	0.079*
C11	0.9818 (5)	0.1601 (3)	0.5038 (5)	0.0665 (18)
H11	1.0218	0.1258	0.5339	0.080*

supplementary materials

C12	1.0206 (3)	0.2510 (3)	0.6389 (4)	0.0612 (14)
H12A	0.9962	0.2257	0.7010	0.073*
H12B	0.9972	0.2969	0.6481	0.073*
C13	1.1951 (4)	0.2506 (5)	0.5441 (5)	0.125 (4)
H13	1.1592	0.2521	0.4785	0.150*
C14	1.1390 (3)	0.2497 (3)	0.6368 (4)	0.0479 (11)
C15	1.1954 (4)	0.2499 (4)	0.7277 (5)	0.0693 (15)
H15	1.1599	0.2498	0.7936	0.083*
N1	0.8735 (3)	0.2166 (2)	0.3967 (4)	0.0527 (11)
N2	0.9721 (3)	0.2237 (2)	0.5420 (4)	0.0515 (12)
O1	0.7903 (3)	0.1640 (2)	0.1601 (3)	0.0683 (11)
O2	0.6563 (3)	0.1466 (2)	0.2657 (4)	0.0700 (12)
O3	0.9194 (5)	-0.0730 (3)	0.2950 (5)	0.120 (2)
O4	0.9764 (4)	-0.1119 (2)	0.1406 (4)	0.0951 (15)
H4	1.0323	-0.1134	0.1741	0.143*
Cd1	0.7500	0.2500	0.27740 (4)	0.04487 (19)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.062 (4)	0.045 (3)	0.059 (4)	0.007 (3)	-0.007 (3)	0.005 (3)
C2	0.096 (5)	0.045 (3)	0.069 (4)	0.000 (3)	0.000 (4)	0.002 (3)
C3	0.149 (6)	0.058 (4)	0.061 (4)	-0.006 (4)	0.036 (5)	0.000 (4)
C4	0.118 (6)	0.103 (6)	0.096 (6)	0.048 (5)	-0.013 (5)	-0.008 (5)
C5	0.085 (4)	0.068 (4)	0.093 (6)	0.022 (4)	-0.020 (4)	0.014 (4)
C6	0.095 (5)	0.078 (5)	0.123 (7)	0.020 (4)	0.014 (5)	0.016 (5)
C7	0.111 (6)	0.065 (4)	0.092 (6)	-0.013 (4)	0.027 (4)	0.005 (4)
C8	0.089 (5)	0.058 (4)	0.087 (6)	0.029 (4)	-0.001 (4)	0.002 (4)
C9	0.036 (2)	0.060 (3)	0.062 (3)	0.015 (3)	-0.002 (3)	0.001 (4)
C10	0.067 (4)	0.055 (4)	0.075 (5)	0.009 (3)	-0.018 (3)	0.002 (3)
C11	0.060 (4)	0.062 (4)	0.077 (5)	0.014 (3)	-0.018 (3)	0.006 (3)
C12	0.037 (2)	0.094 (4)	0.052 (3)	0.009 (4)	-0.006 (2)	0.000 (4)
C13	0.042 (3)	0.291 (12)	0.042 (4)	-0.020(7)	-0.008 (3)	-0.003 (6)
C14	0.040 (2)	0.062 (3)	0.042 (3)	-0.002 (3)	0.001 (2)	-0.009 (4)
C15	0.048 (3)	0.119 (5)	0.041 (3)	-0.006 (5)	0.004 (2)	-0.004 (5)
N1	0.039 (2)	0.056 (3)	0.064 (3)	0.000(2)	-0.007 (2)	0.006 (3)
N2	0.030 (2)	0.069 (3)	0.056 (3)	-0.0009 (19)	-0.002 (2)	0.006 (2)
01	0.083 (3)	0.058 (2)	0.064 (3)	0.001 (2)	0.021 (2)	-0.004 (2)
O2	0.051 (2)	0.059 (2)	0.100 (3)	-0.0010 (18)	0.015 (2)	-0.025 (2)
03	0.143 (5)	0.130 (5)	0.088 (4)	0.059 (4)	-0.019 (4)	-0.005 (4)
O4	0.077 (3)	0.099 (4)	0.110 (4)	0.027 (3)	-0.007 (3)	-0.027 (3)
Cd1	0.0318 (2)	0.0523 (3)	0.0505 (3)	0.0036 (3)	0.000	0.000

Geometric parameters (Å, °)

C1—O1	1.250 (6)	C9—N2	1.325 (7)
C1—O2	1.265 (6)	С9—Н9	0.9300
C1—C2	1.487 (8)	C10—C11	1.347 (8)
C1—Cd1	2.716 (6)	C10—N1	1.361 (6)

C2—C7	1.548 (8)	C10—H10	0.9300
C2—C3	1.561 (8)	C11—N2	1.360 (7)
C2—H2	0.9800	C11—H11	0.9300
C3—C4	1.478 (9)	C12—N2	1.453 (7)
С3—НЗА	0.9700	C12—C14	1.496 (6)
С3—Н3В	0.9700	C12—H12A	0.9700
C4—C5	1.533 (10)	C12—H12B	0.9700
C4—H4A	0.9700	C13—C14	1.347 (7)
C4—H4B	0.9700	C13—C13 ⁱ	1.388 (11)
C5—C8	1.526 (9)	С13—Н13	0.9300
C5—C6	1.529 (9)	C14—C15	1.331 (7)
С5—Н5	0.9800	C15—C15 ⁱ	1.379 (10)
C6—C7	1.453 (9)	С15—Н15	0.9300
С6—Н6А	0.9700	O4—H4	0.8200
С6—Н6В	0.9700	Cd1—N1	2.249 (4)
С7—Н7А	0.9700	Cd1—O1	2.306 (4)
С7—Н7В	0.9700	Cd1—O2	2.384 (4)
C8—O3	1.205 (8)	Cd1—N1 ⁱⁱ	2.249 (4)
C8—O4	1.288 (8)	Cd1—O1 ⁱⁱ	2.306 (4)
C9—N1	1.320 (7)	Cd1—O2 ⁱⁱ	2.384 (4)
O1—C1—O2	119.0 (5)	C11—C10—N1	109.7 (5)
O1—C1—C2	120.8 (5)	C11—C10—H10	125.2
O2—C1—C2	120.2 (6)	N1-C10-H10	125.2
C1—C2—C7	110.2 (5)	C10-C11-N2	106.5 (5)
C1—C2—C3	113.2 (5)	C10—C11—H11	126.8
C7—C2—C3	107.8 (5)	N2—C11—H11	126.8
C1—C2—H2	108.5	N2—C12—C14	113.6 (4)
С7—С2—Н2	108.5	N2—C12—H12A	108.8
С3—С2—Н2	108.5	C14—C12—H12A	108.8
C4—C3—C2	111.2 (6)	N2—C12—H12B	108.8
С4—С3—НЗА	109.4	C14—C12—H12B	108.8
С2—С3—НЗА	109.4	H12A—C12—H12B	107.7
C4—C3—H3B	109.4	C14—C13—C13 ⁱ	121.7 (3)
С2—С3—Н3В	109.4	C14—C13—H13	119.2
НЗА—СЗ—НЗВ	108.0	C13 ⁱ —C13—H13	119.2
C3—C4—C5	112.0 (6)	C15—C14—C13	115.9 (4)
C3—C4—H4A	109.2	C15—C14—C12	121.3 (4)
С5—С4—Н4А	109.2	C13—C14—C12	122.7 (5)
C3—C4—H4B	109.2	C14—C15—C15 ⁱ	122.4 (3)
C5—C4—H4B	109.2	C14—C15—H15	118.8
H4A—C4—H4B	107.9	C15 ⁱ —C15—H15	118.8
C8—C5—C6	112.9 (6)	C9—N1—C10	105.1 (5)
C8—C5—C4	111.2 (6)	C9—N1—Cd1	122.2 (4)
C6—C5—C4	111.5 (6)	C10—N1—Cd1	132.5 (4)
C8—C5—H5	106.9	C9—N2—C11	106.9 (5)
С6—С5—Н5	106.9	C9—N2—C12	126.2 (5)
С4—С5—Н5	106.9	C11—N2—C12	126.8 (5)

supplementary materials

C7—C6—C5	111.5 (6)	C1	94.9 (3)			
С7—С6—Н6А	109.3	C1—O2—Cd1	90.9 (3)			
С5—С6—Н6А	109.3	C8—O4—H4	109.5			
С7—С6—Н6В	109.3	N1—Cd1—N1 ⁱⁱ	97.9 (2)			
С5—С6—Н6В	109.3	N1—Cd1—O1	92.24 (16)			
Н6А—С6—Н6В	108.0	N1 ⁱⁱ —Cd1—O1	141.92 (15)			
C6—C7—C2	114.3 (6)	N1—Cd1—O1 ⁱⁱ	141.92 (15)			
С6—С7—Н7А	108.7	N1 ⁱⁱ —Cd1—O1 ⁱⁱ	92.24 (16)			
С2—С7—Н7А	108.7	O1—Cd1—O1 ⁱⁱ	102.0 (2)			
С6—С7—Н7В	108.7	N1—Cd1—O2	97.33 (15)			
С2—С7—Н7В	108.7	N1 ⁱⁱ —Cd1—O2	87.24 (15)			
Н7А—С7—Н7В	107.6	O1—Cd1—O2	55.00 (14)			
O3—C8—O4	122.2 (7)	O1 ⁱⁱ —Cd1—O2	119.83 (15)			
O3—C8—C5	124.4 (7)	N1—Cd1—O2 ⁱⁱ	87.24 (15)			
O4—C8—C5	113.3 (7)	N1 ⁱⁱ —Cd1—O2 ⁱⁱ	97.33 (15)			
N1—C9—N2	111.8 (6)	O1—Cd1—O2 ⁱⁱ	119.83 (15)			
N1—C9—H9	124.1	O1 ⁱⁱ —Cd1—O2 ⁱⁱ	55.00 (14)			
N2—C9—H9	124.1	O2—Cd1—O2 ⁱⁱ	173.1 (2)			
Summative enders (i) $x_1 + 5/2$ $x_2 + 1/2$ $x_3 + 2/2$ $x_3 + 1/2$ =						

Symmetry codes: (i) -x+5/2, -y+1/2, z; (ii) -x+3/2, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
O4—H4···O2 ⁱⁱⁱ	0.82	1.86	2.644 (6)	161
Symmetry codes: (iii) $x+1/2, -y, -z+1/2$.				

Fig. 1

